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The problem of the effc~ of a longitudinal point impulse at the edge of a thin conical shell is considered. The motion of the 
shell is deserl'bed by two-dimensional equations corresponding to the second low-frequency long-wavelength approximation in 
the theory of elasticity. They are investigated using the matched asymptotic expansion method. The quasffront phenomenon in 
the theory of two-dimertsional shells is treated as a boundary layer in the neighbourhood of a subeharacteristie. 

It is well known that the classical theories of degenerate systems (rods, plates and shells) distort the velocity 
of the extension wave when compared with the three-dimensional theory of elasticity. In the neighbour- 
hoods of the points (or lines) at which such theories predict discontinuities for the parameters of the 
stress--strain state, the exact solution of the problem has a sharply-defined extremum which preserves 
smoothness. Thus the extension wavefront from the classical theories actually turns out to be a quasifront. 

It has been shown [1] that a satisfactory description of a quasifront in one-dimensional problems in 
the dynamics of shells of revolution (the ring-loading case) can be obtained using the equations of the 
so-called plane dynamical boundary layer, basically identical with the equations of the plane theory of 
elasticity at the meridional section of the shell (the case of a plane strain). An alternative approach to 
the investigation of a quasifront in shells of revolution was employed in [2], where it was proposed that 
in order to smooth the discontinuity at the quasifront one should use the high-order low-frequency long- 
wave approximations of the equations of the theory of elasticity. There it turned out that the transition 
from the classical equations of motion which are the lowest-order low-frequency long-wave approxi- 
mation to the high-order approximation equations is associated only with corrections to inertial terms. 
(For more details see [3, 4].) 

The approach used in [2] was extended in [5] to the two-dimensional problem of the action of a 
longitudinal point impulse at the edge of a semi-infinite plate (an extension of the plane Lamb problem). 
In this case the quasifront propagates from the source making along semicircles in the midplane of the 
plate. 

This paper extends earlier work [5] by using the method of matched asymptotic expansions [6, 7] to 
consider the problem of the effect of an instantaneous point impulse at the edge of a semi-infinite 
truncated circular conical shell of thickness 2h. It is assumed that the impulse is directed along the 
generator of the cone and is uniformly distributed across its thickness. 

1. F U N D A M E N T A L  R E L A T I O N S  O F  T H E  P R O B L E M  A N D  T H E I R  
T R A N S F O R M A T I O N  

Let the position of an arbitrary pointA along the midsurface of the shell F be defined by the distance 
cc along the generator of the cone from the point to the boundary OT (which is taken to be a circle of 
radius R) and the angle 0 between the axial planes passing through A and through a reference point 
(Fig. 1). 

We will take the fandamental equations in the following form. 
The equations of :motion (u = u~(a, O, t)ia + u0(a, O, t)i0) 

F 1 
Eh|  An + 

LI+v" 
l g r a d d i v u - 2 p h  [u-h2Dograddivu]=0,  D o - 3 ( l _ v )  2 

l - V  
(1.1) 
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z<__ j 

Fig. 1. 

The "stress--displacement" formulae 

T°ax=l--'--'--'--'--'--'~TL"~ ~ R(l+txla) DO ~" a+ot ua 

= U 0 
~+v R(I+txla) 20 ~o~ a+ct 

(1.2) 

and the boundary conditions (0t --- 0) 

r ~ a =  -P~)~(O),  Tao = 0 (1.3) 

Here t I> 0 is the time, E is Young's modulus, v is Poisson's ratio, p is the density of the shell material, 
ua(tx, 0, t), u0(tx, 0, t) are the displacements of the midsurface F along the axes of the curvilinear system 
of coordinates (ct, 0), T~(tz, 0, t), Ta0(ct, 0, t) are the stresses at the midsurface, P is the amplitude of 
the force, 6 is the delta function, A and the grad div are two-dimensional operators on F, and a is the 
distance along the generator from the vertex of the cone F to the end-section of radius R. 

We take the initial conditions to be null. 
The half-thickness of the shell is taken to be small compared to the radius R, i.e. T I = h/R ~ O. 
When Do --- 0 Eqs (1.1) are identical with the equations of the quasitangential vibrations of a shell 

(vibrations in which displacements within the midsurface dominate) that have been thoroughly investi- 
gated within the framework of the classical Kirchhoff-Love theory (see for example [8]). Except for 
the metric they are identical with the equations of the plane stressed state. The correction term with 
the factor Do introduced in [3, 4] "spoils" the hyperbolicity of these equations and, as will become clear 
later, enables one to smooth the discontinuity at the quasifront. Continuing the analogy with the plane 
problem in the theory of elasticity, one can treat Eqs (1.1) as the second asymptotic approximation of 
the three-dimensional equations of the theory of elasticity for the case of a plane stressed state [3, 4]. 

The domain of applicability of Eqs (1.1) is dearly limited by the bilateral inequality 

r I ~ l ~ 1 (1.4) 

imposed on l, which is the deformation wavelength expressed in terms of R. The upper limit of this 
inequality governs the zone in which one can, at a first approximation, ignore the effect of the shell 
curvature. The lower limit gives a coarse estimate of the domain of applicability of any two-dimensional 
shell theory as a long-wave approximation to the equations of the theory of elasticity. Better values for 
the lower limit in inequality (1.4) (taking into account the errors accumulating in the phase of the 
propagating vibration modes) were obtained in [3, 4, 9, 10], etc. for long-wave approximations in the 
theory of elasticity at various orders. With some additional restrictions the corresponding refinement 
of inequality (1.4) looks as follows: 
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I] % ,~ l ,~ 1 (1.5) 

We introduce l~atentials 9 and ¥ in the usual way 

3 W 1 39 OV 1 ~9 u0 . . . . .  + (1.6) U~-- - - - - -  ) 
3a R ( l + a / a ) 3 0  3a R ( l + a / a ) O 0  

Substituting (1.6) into (1.1) the latter can be transformed to the form 

h2 02A9 ( 2= E ) (1.7) A9 1 ~29 +" DO = 0 c 3 
2 0t 2 2 0t 2 (l V2)p c 3 c 3 -- 

C2 ot~'' - 2(1 + v)p 
(1.8) 

Equation (1.7) describes the propagation of an extension wave and (1.8) that of a shear wave. We 
call 9 and W the e~aension and shear wave potentials, respectively. It is clear from (1.7) and (1.8) that 
the refinement introduced in (1.1) only affects the extension wave and that the equations describing 
the shear wave reraain hyperbolic. Analysis of the extension wave in the central topic of this paper. 

The extension wave velocity c3 corresponding to a degenerate (Do ~ 0) hyperbolic Eq. (1.7) governs 
the previously mentioned quasifront. A priori, it is already clear that refinement introduced into the 
extension wave potential equation is only significant in the neighbourhood of the quasifront, where the 
asymptotically leading terms on the left-hand side of Eq. (1.7) (terms without the factor h 2) cancel 
themselves out. 

Substituting replresentations (1.6) into (1.2) and then into (1.3), we rewrite the boundary conditions 
in terms of the potentials 

Eh [2 029 2 3(I) 32~ 1 32V 1 0 ~ ]  
l+v  ROt~O RaO0 ~'00~ 2 ~ 002 a ~  =0  

- 029 + v 39 1 - V 02~1/ 1 - V OV 2Eh v_~ ~2_._.~ + + _ _ _  

l - v  2 _~--~ R 2 002 a 00~ R O0~O Ra O0 
=-PS(t)8(O) (or = 0) (1.9) 

The original problem has thus been reduced to the solution of Eqs (1.7) and (1.8) with boundary 
conditions (1.9) and null initial data. We solve it by the method of matched asymptotic expansions [6, 
7]. For the problem under consideration this method is implemented by constructing two types of 
expansion: a boundary layer expansion (for Eq. (1.7)) acting in the neighbourhood of the quasifront, 
and an outer expansion of problem (1.7)-(1.9) constructed outside that neighbourhood. It then turns 
out that there is a transition domain in which these expansions are matched, and that the main 
contribution throu$~out the asymptotic expansion obtained is made by wavelengths satisfying inequality 
(1.5). 

2. THE BOUNDARY LAYER IN THE N E I G H B O U R H O O D  OF THE 
Q U A S I F R O N T  

We return to Eq. (1.7) and use the dimensionless variables 

oq = o~/R, 01 = O, tl = tca/R (2.1) 

taking the characteristic linear dimension of the problem to be the radius R. 
In dimensionless variables Eq. (1.7) takes the form 

2 

A I g -  ~12~ + D0"q2 ~ = 0 Otl (2.2) 
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3 2 1 t~ a 2 3 2 
AI = ~ +  - -  - -  + )2 302'  3~ l a 1 + oq 3oq (a I + a I 

We will use singular perturbation theory [6] to investigate Eq. (2.2). 
Because of the symmetry of the problem we will confine ourselves to the domain 0 < 01 < x. Moreover, 

to fix our ideas, we will assume that 

oq < tl, tl - 1 (2.3) 

The second condition in (2.3) means that we only consider times at which the distance tc3 over which 
the quasifront has travelled is comparable with the characteristic linear dimension R. 

It is natural to use coordinates of the form 

 ccosll ] 0 
2a I (a 1 + cq ) 

~ = arcsif  2_~_ (2qlt~ l l t l  + ~ 2  __t2)], "g = t  I 

(2.4) 

when studying the boundary layer. 
The physical meaning of the ~ and ~ coordinates is dear  (Fig. 2). The midsurface F is shown as being 

rolled-out onto the plane. The dashed line represents the extension wave quasifront at time tl, (Y is 
the point of application of the load, A is the point under consideration on F with coordinates (txa, 01, 
q), and M is the point of intersection of the quasifront line with the 01-line passing through A. The 
variable ~ is the length of the arcA'M', i.e. the distance from the quasifront along the 0rline, normalized 
in a certain way (4 > 0 if the point under consideration on F is located behind the quasifront). 

In a boundary layer domain one must assume that the derivative ~/3~ is large, so that one can introduce 
the boundary layer coordinate 

;. = ;  / ~.(n) (2.5) 

and a limiting process ~1 ~ 0 for fixed ~., I] and x. The scaling factor ~t(rl) (g(rl --* 0) as 11 ~ 0) describes 
the width of the boundary layer and will be subsequently determined from the requirement of asymptotic 
self-consistency in the resulting approximation equation. 

Fig. 2. 
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Changing from the system of coordinates (0~1, 01,/1) to (~., 1~, X) and ignoring terms that are asymptotic- 
ally secondary, we obtain the one-dimensional equation 

~ l ] l O3(Pbl = 0 ( 2 . 6 )  
2~X +'~ tPbt-D°l]2 I t3c°s3~ ~4~ 

for the leading te rm tPbl(4. , ~J, "C) in the boundary layer expansion. This equation describes, at the first 
approximation, the,, boundary layer about the subcharacteristic (or characteristic in the corresponding 
degenerate equation) of Eq. (2.2). We call it the dynamical boundary layer surrounding the quasifront. 

Requiting that t]ae derivative with respect to 4. should enter into the asymptotically leading part of 
this equation, we obtain the estimate 

It(q) = 1] V3 (2.7) 

for the width of the boundary layer. 
Note that by an appropriate choice of coordinates in similar problems for a cylindrical shell and a 

plate the equation tor the boundary layer around a quasifront is identical with Eq. (2.6) up to asymptotic- 
ally secondary terms. In these cases (see Fig. 3 for a plate) we have 

4 = ~ - (X~ - 0 t , ~ = arcsin(~ I I't I ) (2.8) 

Here, for a cylindrical shell aa = a/R, 01 = 0, where (a, 0) are cylindrical coordinates on F, and R 
is the radius of the rnidsurface, while for a plate aa = x/R, 01 = y/R, where (x,y) are Cartesian coordinates, 
while for the characteristic linear dimension R one can, for example, choose the distance travelled by 
the quasifront at the time under consideration. 

We will represent the solution of Eq. (2.6) in the form of a Fourier integral. For convenience in 
subsequent matching with the outer solution we write it in the (4, 13, x) system 

+ o o  

cpm = ~ ~ o ( k , ~ , x ) e x p ( i k 4 )  dk  

1 D 2k3 
,t,o(k,f~, x) = O,( k,f~)--Fexp[-i ~ ' r  ] 

"k/l~ L LCOS3 p J 

(2.9) 

Here ~,(k, ~) is an as yet unknown function. It will be determined when matching the boundary layer 
with the outer solution of the original problem. 

/-- f f ~  
/ 

/ 

/ 
I 
I 

\ 

O' 

Fig. 3. 

a, 
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Before constructing the outer solution and the matching procedure, we once again stress that our 
main attention is focused on constructing the solution in the neighbourhood of the extension wave 
quasifront (I ~ I "~ 1). Hence the outer expansion is only of interest for determining the unknown function 
O.(k, 1~). An asymptotic analysis similar to that performed in [11] (see also [5]) shows that in the 
neighbourhood of the quasifront the main contribution to the integral (2.9) is from large values of 
the Fourier transformation parameter k. Below we shall assume, without any further explanation, that 
Ik l>> l .  

3. THE O U T E R  S O L U T I O N  AND MATCHING P R O C E D U R E  

We return to Eq. (2.2) written in (51, 01, tl) coordinates, and consider the asymptotic process 
rl --> 0 for fixed 51, 0~, ft. It is obvious that the leading term %(aa, 01, t0 in the outer expansion (suitable 
at a certain distance from the quasifront) satisfies the limiting equation 

AltO,, - 02% / at 2 = 0 (3.1) 

To determine 90 we have the system of equations (3.1), (1.8) and (1.9). (We shall assume that all 
these equations are written in dimensionless coordinates.) A similar problem for a half-space has been 
investigated in detail in [11]. By analogy with [11] we shall seek a solution in the form of Fourier-Mellin 
integrals 

q),,(51,0t ,q ) = I ~(oq,k,q )exp(ik0j )dk (3.2) 

+ o o  

• (°q,01,q)= ~ W(~l,k,tt)exp(ikOj)dk 
- o o  

1 6+ioo 
d P ( l ~ l , k , t l ) = ~  I X(o~l,k,s)exp(stl)ds (3.3) 

2hi a-i~ 
1 f f+ i~  

~P(51,k,tl) = J Y(51,k,s)exp(st l)dS 
2rci a-i~ 

Here 6 > 0 and s is the Laplace transform parameter. 
We obtain for the functions X(eq, k, s), Y(eq, k, s) a system of ordinary differential equations with 

variable coefficients 

O2X l OX 

OCt~ al+otl 051 
k2 1 35 ~-~2]X = 0 (3.4) (a~ + 5 I)2 

02Y 1 OY k2 [ a 2 + ~t2~2 ] 
05~ + - -  - -  Y = 0 (3.5) 

al + al 051 (a t + 51 )2 

and boundary conditions (51 = 0) 

2ik OX . 1 02Y. 1 OY -2,k~_ X+~_.2 +k2y  - - = 0  (3.6) 
351 al Oct I al ott 1 

02X v OX v)ik O_~Y + ( l _ v ) i k l y = _ p  * O(X----~I ~ -- v k 2 X  - ( l  - (3.7) 
a 1 351 051 a I 

The general solution of Eqs (3.4) and (3.5) can be represented in exponential form 
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P • • • X(~l ,k,{)= Cl(~l,k,{)e×p Ikl Zl(~l)d~ l +C(al ,k ,{)exp -Ikl I Z(~ , )d~  
o 

Y({xl,k,~) = Bl(lZl,k,~)exp{]kl!l gl(ot~)dcg~t+B(CXl,k,~)exp{-lk,?l g({x~)d~} (3.8) 

It is assumed that any functionfi {gl, g, gl, g} satisfies the condition ~ a~ ,v..,~.~~, 0 j~oq),,,~ 1-- 0 when ~q > 0. 
Using the null initial conditions we obtain the equations C1 = B1 = 0. The functions g({xl) and g(~xl), 
and also the dependence of C({Xl, k, ~) and B(al, k, ~) on al is determined by substituting (3.8) into 
Eqs (3.4) and (3.5). Here we again recall that for the matching procedure it is sufficient merely to 
construct the Fourier-image of the outer solution of the problem for large values of the parameter 
I k I. As a result we have 

X(oq ,k,~) = C, (k,~)[1 + L2(~I ,~)]-~ exp[-Ikl p({x 1 ,~)] (3.9) 

Y(I~I, k, ~)  = B, (k, ~)[1 + X 2 (~l , ~ ) ] - ¼  exp[-f kl p(oq, ~)]  

~,(0~ I , ~ )  = (1 +~1 / al )~ 

We find the functions C, and B, after substituting (3.9) into boundary conditions (3.6) and (3.7). When 
I k I >> 1 we have, at a leading term 

C. = 2/ ,  + ~2) 1//4, 2P.isignk )i//4 
(1.-~-~k 2 F(~,)(1 B .=  O--'v-'~ G(~)(I+~2Y2 (3.10) 

F(~)_2+~2~,2 ,  G(~)= 23/1+~2, r (~ )= (2+~2y2)2 -4  1 + ~ 3 / ~ 2 y 2  
r(~) r(~) 

Substituting rep~resentation (3.9) into the Mellin integrals (3.3), and using (3.10) we obtain 

dp(~l,k,tl)= .1 a+i**~ C, Ikl ! e-lkl[p(etl'~)-~tl]d~ (3.11) 
2hi a-i** [1 + kZ(al ,~)] !//4 

~p(~l,k,tl ) = 1 a+i**l B, Ikl e-lkl[p(cq'~)-~tl]d~ 
2/ri o-i-  [1 + ~,2(a I ,y~)] 1//4 

Bearing in mind the symmetry of C, and the antisymmetry of B. with respect to k in (3.10), one can 
reduce the right-h~md sides of formulae (3.2) to integrals over the positive semi-axis 0 < k < +-0. As 
a result we obtain 

q)o ((X1,01 ,t I ) = -272p. ~ J((z I ,k,t I ) c°s(]¢OI ) dk (3.12) 
o k 

j (oq,k , t l )  = 1 o~i~* (1+~211//4F(~) e_lkl[p(ctl,~)_~tl]d ~ 
2hi o - i -  [1 + ~,2(a I ,~)] 1~ 

for the potential q¥. (Similar expressions for the potential ¥ are not given because its contribution in 
a neighbourhood of the quasifront is zero.) 

The integral expressing the function J when a I --~ oo (the conical shell degenerating into a cylinder) 
is identical with a t]~oroughly investigated integral from non-stationary dynamics [11, 12], and when k 
--) .o it is determined by a similar method of steepest descent. Omitting intermediate calculations, we 
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give the final result 

j =  sin.__._~ (c__.~s ~ )Re  {(1 + i)ex~ika, \a l  +cq JJJ ~fl_~l cos~ [ F i arcsin(t, cos ~ ))l  (3.13) 

To match expansions (2.9) and (3.12) we apply the matching principle. This amounts '- to the outer 
expansion of the inner (i.e. boundary layer) expansion coinciding with the inner (boundary layer) 
expansion of the outer expansion. If  this rule is satisfied, the expansions have overlapping domains of 
applicability. 

Expanding (2.9) when rl ---> 0 with fixed oq, 01, tl, and (3.12) when rl ---> 0 with fixed ~,, 13, x, and 
comparing, we obtain the required function 

t b . ( k , ~ ) =  T2P* sin[~ F(  i ~ (1+i) 

2 ~ "  cos'~l] ~ ) l k l  ~ ~ g n k  
(3.14) 

Using (1.6) we finally obtain for displacements in the neighbourhood of the quasifront (in 4, 13, x 
coordinates) 

a/2~/2 P. a I sin[3 F ( i ~ l  

u° : -  f l-~R 4al 2 + z 2 + 2al,csin ~ cos~---~ 

s in[~+x/a  I 
//¢t = cos [~ u° 

(3.15) 

+" I x ] d k  (3.16) I =  ~ sin k~ D°rl2k3x÷-~ 
0 2 c o s  3 I~ 

If we allow for the different meanings of the variables (cf. (2.4) and (2.8)), integral (3.16) is identical 
with the similar integral for the plate problem [5]. All the conclusions in [5] that apply to integral (3.16) 
also apply here. Hence, in particular, at a distance I ~l ~ t0 ~ 1 ( ~  - rl 2/5) from the quasifront the 
main contribution is made by values of  the Fourier transformation parameter k which correspond to 
monochromatic waves in the interval (1.5). 

This research was performed with financial support from the International Science Foundation 
(M7XO00). 
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